Capacitors
A capacitor is an electronic device that stores energy in form of electrical charges.
Capacitors are one of the most important basic electronic devices used in most electronic circuits. Capacitors have many functions which can be explained on the basis of their characteristics:
A capacitor is constructed anytime two electrical conductors are separated by a dielectric (very poor electrical conductor), so, you and your friend standing opposite you forms a capacitor, cos, you and your friend constitute two electrical conductors or conducting plates, while the air passing in-between you is a poor electrical conductor.
When two conducting plates are separated by a dielectric, a capacitor is formed. See image below:
The capacitance of a capacitor can be calculated with the following parameters:
1. The area of the conducting plates (A)
2. The distance of separation between the plates (d)
3. The dielectric constant of the material, which can also be called the permittivity of the dielectric (ε)
From the formula above, the capacitance of a capacitor increases with increase in the permittivity of the dielectric material, increase in the area of the conducting plates and decrease in the separation distance between the conducting plates.
The three commonest circuit elements in electronics, resistor, inductor and capacitor cannot be overemphasized in electronic circuit design. Resistor is a heat dissipating element and the other two elements inductor and capacitor are energy storing elements. Inductors and capacitors also dissipate some power due to what we call capacitance and inductive reactances. I will be making a tutorial on this in the future.
The voltage rating on a capacitor is the maximum amount of voltage a capacitor can safely be exposed to.
This means that for a capacitor to remain healthy, there is a particular amount of voltage it is expected to store and not more than that. Just as a person should consume a certain amount of food to remain healthy. Also, alongside the voltage rating of a capacitor is the rated charge value. Hence, a capacitor has designated voltage and charge values. This information is printed on the body of most capacitors.
So, when you go to buy a capacitor, you have to bear in mind the voltage rating of the capacitor you want to buy and its charge value. As a matter of fact, when you go to an electronic shop to buy a capacitor, once you tell the seller: give me 1000µF capacitor ( µF = micro farad the unit of measuring the capacitance of capacitor) the response you will get will be “at what voltage?” hence, before you use a capacitor in electronic circuit design, you must define the voltage and the capacitance values of the capacitor, you must know what you are working with. Capacitance here refers to the amount of charge the capacitor can take at the rated voltage value, and it is related to voltage in the formula, Capacitance = Charge/Voltage, C = Q/V
It is important to note that capacitors come in different sizes and shapes, this is because when designing electronic circuit as we have discussed in our series of videos on how to design electronic circuit from scratch, you can watch one of the videos in the series below:
video teaching how to design electronic circuit from scratch
the designer should select components that will accurately suit the shape and size of the design. I will discuss the various types of capacitors in future tutorial.
Capacitors behave like batteries, in that they store charges, the difference being that capacitors discharge faster than batteries
Note that, capacitor’s voltage rating is not the voltage that the capacitor charges up to, but the maximum amount of voltage a capacitor should be exposed to while charging it.
The electronic tool used in measuring a capacitor is called a capacitance meter, it is often embedded on a Multimeter.
You can as well read our tutorial on how to use a multimeter to measure current and voltage.
The unit of capacitance measurement is called Farad, F. It is rare to find a capacitor used in electronic circuit board that measures up to a farad. But supercapacitors can measure up to thousands of farads. Capacitors measured in sub-units like microfarad, nano farad and picofarad are used most in electronic circuit design.
1 microfarad abbreviated as µF is equivalent to 0.0000001F, while 1 nano-farad abbreviated as nF is equivalent to 0.000000001F and 1picofarad abbreviated as pF is equivalent to 0.0000000000001F
1 µF= 0.000001F
1 nF = 0.000000001F
1 pF = 0.000000000001F
Just like a resistor, a capacitor can be connected both in series and in parallel in a circuit, or the both together. Unlike resistors, when capacitors are connected in series, their capacitance value as a unit go down or is reduced, while this value increases when they are connected in parallel.
To calculate the equivalent value of capacitors connected in series, we use the formula:
Problem 1: calculate the equivalent capacitance of the capacitors connected in (a) series and (b) in parallel, C1 = 3µF, C2 = 5µF.
Another electronic component that is of great importance in electronic circuit design is the resistor.
One of these components that every designer should know how it behaves is called a “Resistor”
The work of a resistor in a circuit is to reduce current flow. This is the ultimate principle and function of a resistor, in line with this principle, a resistor can do the following:
To learn more about a resistor, check my tutorial on what is a resistor and how to use resistor. I have also made made a tutorial on resistor color codes, you can check that out as well.
Also check out other tutorials I have made in the past like:
Arduino tutorial for beginners
Arduino project
Electronic circuit design tutorials
When choosing a novel to read, many people consider not just the genre or author,… Read More
Many readers search for “What is Regretting You about?” before diving into Colleen Hoover’s emotionally… Read More
When readers ask “Is Regretting You worth reading?”, they are usually looking for more than… Read More
Colleen Hoover has a remarkable ability to craft emotionally resonant stories that linger long after… Read More
Colleen Hoover’s Regretting You is one of those novels that quietly pulls readers in and… Read More
HIS DOE, HIS DAMNATION by Viviene is an engaging, emotionally charged adult billionaire romance novel… Read More